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The Neurorestoratology discipline is getting worldwide attention from the clinicians,

basic scientists, students and policy makers alike. Accordingly, this year too, the 

discipline has made profound advances and great achievements for the benefit of the

mankind. In this report, of the 2018 Neurorestoratology Yearbook, salient features of

new developments are summarized. This Yearbook consists 3 key themes namely (i) the 

new findings on pathogenesis of neurological diseases or degeneration; (ii) the new

mechanisms of neurorestorative aspects; and (iii) the achievements and progresses

made in the clinical field of neurorestorative therapies. The new trend has emerged in 

clinical studies that are based on greater levels of evidence-based medical practices both 

in clinical therapies and clinical trials based on standard designs. 
 

 

 
 

1 Introduction 
 

Little drops of water, little grains of sand, make the mighty 

ocean and the pleasant land. —Julia Carney. 

The Neurorestoratology is one of the frontiers of 

neuroscience and neuro-medicine disciplines. To make 

readers aware and to follow the developments in 

the field every year, we have initiated publishing 

the Yearbooks recently that is acclaimed among the 

neurorestorative communities worldwide. Accordingly, 

the 2018 Neurorestorative Yearbook summarizes the 

major progresses and achievements of the year focusing 

on pathogenesis of neurological diseases, mechanisms 

of neurorestorative function, and clinical therapies 

based on neurorestorative principals. 

 

2  New findings on pathogenesis of the 

diseases or degeneration in the nervous 

system 
 
Several studies support the cholinergic system failure 

hypothesis in the development of Alzheimer’s disease 

(AD) pathogenesis because cholinergic therapy either 

slowed down or partially restored brain atrophy [1]. 

In addition, the tau pathology strongly connected 

with the pathologic processes of AD. The tau deposi-

tion could damage the intrinsic neuronal network  
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connectivity and spread further within the brain to 

damage synaptic connection. With the increasing 

tau burden in AD, the functional impairment and 

weakening of the neuronal connectivity occurs in a 

progressive manner leading to loss of function and 

development of the disease [2]. Musi et al. found a 

strong association between the presence of neuro-

fibrillary tangle (NFTs) and cellular senescence    

in the brain causing neurodegeneration [3]. This 

pathological process may be implicated for a new 

neurorestorative therapy for suitable AD treatment. 

The study by Wei et al. demonstrated that exacerbating 

oxidation of the voltage-gated K+ channel subfamily 

B member 1(KCNB1) channels might be another key 

factor in the pathogenesis of AD [4]. Gatt and coworkers 

reported that patients with dementia associated with 

Lewy bodies (DLB) in AD and/or in Parkinson disease 

dementia (PDD) exhibited 2-fold increase in cortin- 

positive cells in the subgranular zone as compared to 

non-demented controls subjects. They also found that 

treatment with selective serotonin reuptake inhibitors 

was associated with increased hippocampal neuro-

genesis and preservation of cognition in DLB/PDD 

patients [5]. 

Hu et al. showed that the T-lymphocyte levels   

in the peripheral blood were lower in Parkinson’s 

disease (PD) than in healthy subjects. Treatment with 

L-DOPA in PD patients resulted in higher levels of 

T-lymphocytes in the peripheral blood as compared to 

placebo. This is well known that the immune function 

of T cells in patients with other severe neurological 

disease are also lower in plasma [6]. 

Through integrating genomic fine mapping with 

brain expression and chromosomal conformation 

data, Pardiñas and colleagues identified the genes 

within 33 loci was responsible for the pathogenesis of 

schizophrenia [7]. 

Shi et al. showed that reducing chromosome 9 open 

reading frame 72 (C9ORF72) expression by repeating 

its expansion could trigger motor neurons’ degeneration 

in patients with amyotrophic lateral sclerosis (ALS) 

through accumulation of glutamate receptors that lead 

to excitotoxicity and/or impaired clearance of neurotoxic 

dipeptide repeat proteins derived from the repeat 

expansion [8].  

There are discrepancies in discoveries about 

neurogenesis in human. Sorrells et al. reported that 

neurogenesis in the dentate gyrus does not continue, 

or is extremely rare, in adult humans. The number of 

proliferating progenitors and young neurons in the 

dentate gyrus declines sharply during the first year 

of life until 13 years of age [9]. One report by Boldrini 

et al. demonstrates that similar numbers of intermediate 

neural progenitors and neurons are present in the 

dentate gyrus across the ages. On the other hand, 

healthy older subjects without cognitive impairment 

or neuropsychiatric disease keep neurogenesis and 

sustained human-specific cognitive function throughout 

the life [10]. These discrepancies in results suggest that 

pathogenesis of neurodegenerative and psychological 

diseases might be of different origin. 

 

3 New mechanisms of neurorestorative 

therapy 
 
Intranasal mesenchymal stromal cell (MSC) treatment 

significantly improved sensorimotor and mech-

anosensory function after 21 days of subarachnoid 

hemorrhage (SAH) associated with a sharp decline in 

SAH-induced activation of astrocytes and microglia/ 

macrophages in the affected hemisphere. This 

suggests that SAH induced activation of microglia and 

microphages could be reduced by treatment of stem 

cells and indicates one of the functional neurorestorative 

mechanisms [11]. 

Kunath et al. showed that the focal nature of 

PARKIN-mediated neurodegeneration and lack of 

active synucleinopathy in most young-onset cases 

could make patients to be the ideal candidates for 

dopaminergic cell replacement therapy. This is in 

the line of a new neurorestorative mechanism using 

genetically engineered grafts that are resistant to 

synucleinopathy. It appears that this will improve the 

outcome of cell replacement therapies for sporadic 

PD cases [12]. 

Data of da Silva et al. showed that manipulations 

of dopamine neuronal activity of the substantia nigra 

pars compacta after initiation of motor activity did 

not affect the ongoing motor functions [13]. Liu et al. 

revealed that fast release of dopamine could provide 

molecular machinery for functional regulations. These 

findings will definitely advance the therapeutic 

strategies for the patients of PD in future [14]. 

A study by Konermann et al. demonstrated that 
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CasRx as a programmable RNA-binding module for 

efficient targeting of cellular RNA in a neuronal model  

of frontotemporal dementia. This enabled a general 

platform for transcriptome engineering, which could 

be a new neurorestorative mechanism for exploration 

of future therapeutic strategy [15]. 

Pignatelli et al. reported that unknown transient 

enhancement of context recognition was based on the 

plasticity of engram cell excitability. This is a recall 

of contextual memory that is influenced by previous 

but recent activation of the same engram. The state 

of excitability of engram cells mediates differential 

behavioral outcomes upon memory retrieval. This 

suggests that promoting adaptive behavior may be 

important for survival [16]. 

Bussian et al. found cleaning up senescent astrocytes 

and microglia could prevent gliosis, hyperpho-

sphorylation of both soluble and insoluble tau, and 

degeneration of cortical and hippocampal neurons. 

This could be the basis of preserving cognitive 

function [17]. 

Data by Bedrosian et al. elucidates that increasing 

the amount of maternal care can block the accumula-

tion of long interspersed nuclear element-1 (L1). 

This early life experience drives somatic variation in 

the genome via L1 retrotransposons. This discovery 

implicates to treat certain disease of the children such 

as Autism through mothers’ more love and care [18]. 

 

4  New achievements and progresses in 

clinical neurorestorative therapies  
 

4.1 Cell therapy 

Levi et al. conducted a multi-center single blind, 

randomized clinical study of human neural stem cell 

transplantation into the cervical spinal cord in patients 

with chronic C5-7 tetraplegia. They found that after 

1-year post-transplantation, the procedures of cell 

therapy were safe, well tolerable, and feasible and 

resulted in a trend towards motor sensibility gains 

in the treated subjects [19]. Further research by 

Guadalajara et al. showed that a 58-year-old man 

with an incomplete spinal cord injury (SCI) secondary 

to L1 vertebral fracture, presented gait disorder 

with neurogenic bowel and bladder dysfunction. He 

received autologous mesenchymal stromal cells in the 

subarachnoid space by lumbar puncture. This patient 

had significant improvement in almost every functional 

scale of SCI [20]. Vaquero et al. reported a phase 2 

clinical trial in patients with chronic SCI that received 

three intrathecal administrations of MSCs. In this study, 

patients showed varied clinical improvement in sensiti-

vity, motor power, spasms, spasticity, neuropathic 

pain, sexual function and/or sphincter dysfunction 

during the follow-up [21]. This treatment was also 

well tolerated without any adverse event-related to 

MSC administration. Vaquero et al. further presented 

a phase 2 clinical trials that has six paraplegic patients 

with post-traumatic syringomyelia that received 

MSCs inside the syrinx [22]. These patients achieved 

reduction of syrinx and clinical improvements in 

motor function, sensation, neurogenic urodynamic 

and bowel dysfunction and spasticity with a follow-up 

for 6 months in different degrees of improvements. 

Vaquero et al. reported that intrathecal administration 

of autologous MSCs could improve progressively or 

relieve neuropathic pain intensity in SCI patients 

during 10 months’ follow-up [23]. Data by Santamaría 

et al. showed results in a female subject with complete 

C2 SCI who received bone marrow derived MSC 

through intrathecal infusions. After 14 months’ post- 

injury, she exhibited deep inspiratory maneuvers 

triggered respiratory-like EMG bursting in the biceps 

and several other muscles [24]. Gustavo et al. reported 

that the combination of immune and regenerative cell 

therapy could restore chronic muscular atrophy in 

clinical and histological examination in patients with 

severe muscular atrophy because of chronic complete 

SCI [25]. Al Kandari et al. followed up nine patients 

with chronic SCI that underwent cell transplantation 

therapies from China, Egypt, Germany, India, and 

Iran; but didn’t find clinical useful improvements  

in sensorimotor, autonomic, or functional status in 

individuals after cell therapy [26]. 

Liem et al. reported that bone marrow-derived 

mononuclear cells transplantation could improve 

bowel function in 2 children with spina bifida after 

myelomeningocele repair [27]. 

Sung et al. examined the effects of transfusion of 

circulatory-derived autologous CD34+ cells into the 

intra-carotid artery of the ipsilateral brain infarct area 

in old ischemic stroke patients. Their results showed 

that procedure of CD34+ cell therapy was safe and 
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might offer some benefits to old ischemic stroke 

patients [28]. A study by Savitz and coworkers revealed 

that delivering autologous bone marrow derived 

ALD-401 through internal carotid artery infusion for 

patients with disabling middle cerebral artery subacute 

stroke was safe, but didn’t show significant functional 

improvement compared to sham-harvest with sham- 

infusion [29]. Laskowitz et al. conducted a phase I 

open-label trial, which showed that a single i.v. dose 

of allogeneic non-HLA matched human umbilical 

cord blood cells was safe and improved some of the 

neurological functions in 10 patients with acute middle 

cerebral artery ischemic stroke [30]. 

van Horne et al. reported that peripheral nerve graft 

within the substantia nigra at the time of deep brain 

stimulation (DBS) surgery was feasible, safe and had 

some clinical benefits for patients in PD [31]. 

Nguyen et al. reported that the autologous bone 

marrow mononuclear cells improved quality of life in 

30 children with cerebral palsy (CP) after 6 months  

of transplantation through intrathecal infusions [32]. 

This was accompanied with improvements in gross 

motor function and muscle tone. Elena et al. showed 

that cell therapy based on M2 macrophages was safe 

and significantly improved neurologic functions in 

patients with severe CP [33]. 

da Cruz et al. successfully delivered the retinal 

pigment epithelium patch for two patients with age- 

related macular degeneration. The epithelium patch 

survived well and associated with patients’ visual 

acuity improvement during 12 months’ follow-up 

study [34]. 

Mao et al. showed their clinical study of a multicenter, 

randomized, double-blinded, placebo-controlled trial 

of olfactory ensheathing cells and Schwann cells to 

test two kinds of neurorestorative effect for patients 

with sub-acute and chronic ischemic stroke [35]. Phan 

et al. report their design of phase 1 trial of human 

amniotic epithelial cells (hAECs) for ischemic stroke 

that assesses the safety of allogeneic hAECs [36]. Deng 

et al. publish their design of a prospective, randomized, 

controlled, observer-blinded phase II trial to assess 

the clinical safety and feasibility of allogenic bone 

marrow-derived MSCs by intrathecal infusion in 

patients with ischemic stroke due to cerebral infarction 

within the middle cerebral artery [37]. Osanai et al. 

report the design, which is a randomized, double-blind, 

placebo-controlled, multicenter for MultiStem®-one kind 

of allogenic cell products cell products in patients 

with acute (within 18–36 h of stroke onset) ischemic 

stroke. Its aim is to obtain stronger evidence and to 

show the efficacy of MultiStem® for treatment of 

ischemic stroke [38]. 

Garitaonandia et al. report that International Stem 

Cell Corporation’s (ISCO’s) will conduct a single- 

center, open label, dose escalating 12-month study 

with a 5-year follow-up evaluating the safety and 

efficacy of a novel human parthenogenetic derived 

neural stem cell in PD patient [39]. 

Loring reports that an autologous cell therapy is 

entering the regulatory approval process in 2018 with 

the U.S. Food and Drug Administration, and will begin 

to transplant the cells within 1 to 2 years [40]. 

4.2 Neurostimulation/neuromodulation and the 

brain-computer interface (BCI) 

Cichoń et al. reported extremely low-frequency 

electromagnetic field therapy could improve the 

effectiveness of rehabilitation for post-stroke patients 

through significantly increased growth factors, cytokine 

levels and gene expression on the mRNA level.  

This could be another new mechanism of functional 

neurorestoration [41]. 

Implanted electrodes for electrical stimulation with 

intensive neurorehabilitation could partially restored 

standing and walking abilities in patients with complete 

chronic SCI [42,43]. In such cases, improved reflexive 

voiding efficiency [44], enhanced cardiovascular fitness 

and body composition [45], better neurological recovery 

[46] that supported the activities of daily living [47], 

and reduced that elevated blood pressures to normal 

ranges from a chronic hypotensive state [48] were 

observed. 

Poiani and colleagues report that a design of a 

randomized double-blinded trial of photobiomodula-

tion using low-level laser therapy (LLLT) could be an 

effective low-cost treatment for patients with traumatic 

brain injury (TBI). The results were evaluated to see 

whether LLLT could improve or restore cognitive 

sequel after TBI [49]. Santos et al. published a design 

of a double-blinded, randomized, controlled trial of 

patients with diffuse axonal injury due to a severe TBI 

in an acute stage. They evaluated whether early and 

delayed effects of transcranial light-emitting diodes 
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therapy could improve or restore the cognitive function 

and promote beneficial hemodynamic changes in 

cerebral circulation [50]. 

da Silva et al. presented a design of a randomized, 

controlled, double-blind, clinical trial for photobio-

modulation in the sublingual region for multiple 

sclerosis (MS). The neurorestorative mechanisms  

for photobiomodulation may include neurogenesis, 

reducing nitric oxide levels, and regulating the cytokine 

IL10 and thereby inducing neuroprotection [51]. 

4.3 Neurorestorative surgery 

Falci et al. performed dorsal root entry zone lesion 

of the spinal cord caudal to the level of complete 

spinal cord transection could completely or near- 

completely relieve all below-level neuropathic pain 

in 3 patients but failed to relieve their SCI induced 

central pain [52]. 

Intramedullary decompression under microscope 

and decompression laminectomy with duroplasty 

can benefit for patients with acute complete SCI in 

improving their neurological functions. But these 

procedures need to be confirmed by clinical trial of a 

multicenter, randomized, double blind placebo-control 

of intramedullary decompression. The design of a 

clinical trial of intramedullary decompression will 

explore the safety and neurorestorative effects in 

patients with acute complete spinal cord contusion 

injury [53]. 

4.4 Pharmaceutical neurorestorative therapy 

Evidence from Ko et al. demonstrated that acidic 

fibroblast growth factor directly applied to the injured 

spinal cord in 48 patients with chronic SCI was safe, 

feasible, and could yield modest functional improve-

ment after 48 months of follow-up study [54]. 

Granulocyte-colony stimulating factor (GCSF) had 

some benefits in cases of incomplete subacute and 

chronic SCI in some studies of double-blind randomized 

controlled clinical trials [55, 56]. 

McDonald et al. reported placebo-controlled phase 2 

trial of Drisapersen for Duchenne muscular dystrophy. 

They found that Drisapersen 6 mg/kg/week resulted 

in a treatment benefit of 6-minute walking distance 

that is largely maintained up to 24 weeks after 

discontinuation of the therapy [57]. 

Panza et al. showed the trial design to evaluate 

whether solanezumab and gantenerumab could prevent 

AD in its early onset for people with autosomal- 

dominant AD or cognitively healthy subjects at risk 

of developing sporadic AD [58]. 

4.5 Bioengineering and tissue engineering therapy 

Strauss et al. reported that intrathecal antisense 

oligonucleotide (nusinersen) therapy was relatively 

safe and well tolerated in spinal muscular atrophy 

(SMA) patients with advanced disease and spinal 

fusion [59]. 

Eckstein et al. described that rituximab was used 

to treat 8 patients with langerhans cell histiocytosis 

and neurologic dysfunction resulted in some clinical 

improvement that included gait abnormalities, tremors, 

proprioceptive deficits, dysarthria/dysphagia and 

intellectual/behavioral/psychological symptoms [60]. 

Kucher et al. found that human anti-Nogo-A 

antibody was well tolerated in patients with acute 

complete SCI through intrathecal administration and 

showing some efficacy [61]. 

4.6 Other therapies 

Hubscher et al. found that locomotor training could 

improve bladder, bowel and sexual function in patients 

with chronic SCI [62]. Sandroff et al. published a 

design of a single-blind, randomised controlled trial of 

exercise training for managing learning and memory 

impairment and evaluated whether this therapy 

could improve cognition in patients with multiple 

sclerosis [63]. 

4.7  Guidelines 

Trento et al. showed large heterogeneity regarding 

product specification, particularly in the markers used 

for phenotypical characterization and their threshold 

of expression. Thus, use of potency assays to MSC 

functionality, and karyotyping aside from variations in 

the culture method is needed in order to standardize 

the MSC product as a clinical therapeutic tool. For 

this, it is needed to set up the standard of cell culture 

and quality control to keep cells more homogeneous 

that may reduce variability and could be easier to 

interpret results in clinical trials from different 

centers [64]. 

It should be noted that several authors often 

misused this identification standard of MSCs to that 
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of mesenchymal stem cells. The criteria of MSCs 

developed by the International Society for Cellular 

Therapy include (1) MSC must be plastic-adherent 

when maintained in standard culture conditions; 

(2) MSC must express CD105, CD73 and CD90, and lack 

expression of CD45, CD34, CD14 or CD11b, CD79alpha 

or CD19 and HLA-DR surface molecules; and (3) MSC 

must differentiate to osteoblasts, adipocytes and 

chondroblasts in vitro [65–67]. 

In this regards, Chinese Association of Neurores-

toratology sets the standards of the culture and quality 

control of umbilical cord MSCs and neural progenitor/ 

precursor cells that were used in neurorestorative 

clinical application in 2017 [68, 69]. 

International Association of Neurorestoratology 

and the Chinese Association of Neurorestoratology 

proposed clinical cell therapy guidelines for neuro-

restoration, which included items of cell type 

nomenclature, cell quality control, minimal suggested 

cell doses, informed patients consent, indications 

and contraindications for undergoing cell therapy, 

documentation of procedure and therapy, safety & 

efficacy evaluations, policy of repeated treatments, no 

cost to patients for unproven therapies, basic principles 

of cell therapy, and publishing responsibility [70]. 

Based on established medical, engineering and 

scientific principles, Bikson et al. outlined a robust 

and transparent technical framework for ensuring 

limited output transcranial electrical stimulation devices, 

which are designed to minimize risks, while also 

supporting access and innovation could be a new 

beginning in neurorestorative therapy for the benefit 

of patients [71]. 

 

5  Summary 
 
In 2018, the trend in global clinical research revealed 

that there are rigorous and high levels of evidence- 

based medical practice in ongoing or completed clinical 

trials and/or upcoming clinical trial designs. This will 

undoubtedly provide greater benefits to patients from 

neurorestorative therapies. 
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